Dificultades en la comprensión del concepto derivada de una función

Nora Elisa Pereyra, Carlos Gabriel Herrera

Resumen


El concepto de derivada de una función ha sido analizado por numerosos autores en el campo de la Didáctica de la Matemática, y en general, las conclusiones de sus investigaciones, coinciden en que los alumnos tienen dificultades en su comprensión.  En este sentido se planteó el presente trabajo fundamentado en la teoría APOE. El proceso de investigación, en esta teoría, conlleva el realizar un modelo cognitivo llamado descomposición genética, mediante el cual un estudiante puede construir un concepto matemático. Esta última, consiste en una hipótesis sobre una descripción detallada, de las construcciones que los estudiantes pueden hacer para aprender un concepto. Por ello, basándonos en la mencionada teoría se planteó como objetivo del trabajo, analizar las dificultades en la comprensión del concepto matemático de derivada, presentando una propuesta de descomposición genética, a efectos de llevar a cabo la investigación. Este estudio es de metodología cualitativa, de tipo descriptivo, empleando estudio de casos, y se aplicó a tal fin un instrumento de recolección de datos, que consistió en ítems destinados a analizar si los estudiantes identifican con claridad el concepto de derivada de una función en un punto, como así también el concepto de función derivada. En esta primera etapa, y fundamentado en la descomposición genética propuesta, se ha podido determinar las dificultades predominantes en la construcción del concepto matemático derivada, observándose que los estudiantes presentan conocimientos parciales del concepto, mostrando inconvenientes tanto para encapsular en objeto, el concepto de función derivada, como para llevar a cabo el estudio del comportamiento de funciones, en base al signo de la derivada primera.


Palabras clave



Citas


Amaya, C. S., Rojas, H. D., & Ballen, M. B. (2009). Descripción de niveles de comprension del concepto derivada. Tecné Episteme y Didaxis TED, (26).

Artigué, M., Douady, R., Moreno, L., & Gómez, P. (1995). La enseñanza de los principios del cálculo: problemas epistemológicos, cognitivos y didácticos. Ingeniería didáctica en educación matemática, 1, 97-140.

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. Maa Notes, 37-54.

Azcárate, C. y Camacho, M. (2003). Sobre la Investigación en Didáctica del Análisis Matemático. Boletín de la Asociación Matemática Venezolana, 10 (2), 135-149

Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, 22(4), 479-495.

Dubinsky, Ed (1991). “Reflective Abstraction in Advanced Mathematical Thinking”. En D. Tall(Ed) Advanced Mathematical Thinking. Dordrecht: Kluwer, 1991. p. 95-123

Dubinsky, E. (1996) Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación matemática, 8(3), 24-41.

Habre, S., & Abboud, M. (2006). Students’ conceptual understanding of a function and its derivative in an experimental calculus course. The Journal of Mathematical Behavior, 25(1), 57-72.

Harel, G.; Selden, A. & Selden, J. (2006). Advanced mathematical thinking. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: past, present and future (pp.147-172). Rotterdam, The Netherlands: Sense Publishers.

Kú, D., Trigueros, M., & Oktaç, A. (2008). Comprensión del concepto de base de un espacio vectorial desde el punto de vista de la teoría APOE. Educación matemática, 20(2), 65-89.

Sánchez-Matamoros, G., Mercedes, G., & Llinares, S. (2013). Algunos indicadores del desarrollo del esquema de derivada de una función. Bolema: Boletim de Educação Matemática, 27(45), 281-302.

Trigueros, M. (2005). La noción de esquema en la investigación en matemática educativa a nivel superior. Educación matemática, 17(1), 5-31.

Urquieta, M., Yañez, J. C., & Andrade, J. S. (2014). Análisis según el modelo cognitivo APOS* del aprendizaje construido del concepto de la derivada. Bolema: Boletim de Educação Matemática, 28(48), 403-429.

Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: The concept of derivative as an example. The Journal of Mathematical Behavior, 25(1), 1-17.


Texto completo

Refbacks

  • No hay Refbacks actualmente.


Licencia de Creative Commons
Esta obra está licenciada bajo una Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .

Revista Electrónica de Investigación en Educación en Ciencias. ISSN 1850-6666 UNCPBA-NIECyT-CONICET Pinto 399 -  C.P. 7000 Tel. 0054 0249 4439653 Tandil, Buenos Aires, Argentina. reiec@exa.unicen.edu.ar